Error probability analysis of a MIMO system with noncoherent relaying and MMSE reception
Donatella Darsena, Member, IEEE, Giacinto Gelli, Fulvio Melito, and Francesco Verde, Member, IEEE.

Abstract—This paper deals with symbol error probability (SEP) analysis of a multiple-input multiple-output (MIMO) system with spatial multiplexing, which employs noncoherent (i.e., without channel state information at the relays) amplify-and-forward half-duplex relays and linear minimum mean-square-error (MMSE) equalization at the destination. A closed-form approximation of the SEP is derived, which holds for an arbitrary number of relays placed in different positions. Numerical results show that the obtained SEP approximation is very accurate if the number of relays is greater than two.

I. INTRODUCTION

COOPERATIVE transmission techniques [1] have attracted considerable research interest, thanks to their capability to improve communication coverage and reliability in wireless channels corrupted by fading. Moreover, cooperative schemes can be conveniently adopted also in multiple-input multiple-output (MIMO) systems, in order to further improve their diversity and/or multiplexing gains [2]. The two relay protocols mostly considered in the literature are decode-and-forward, where the relays decode, re-encode, and retransmit the source messages, and amplify-and-forward (AF), where the relays simply scale the received signal according to a power constraint and forward it to the destination. The AF relaying strategy has gained recently a lot of attention [3]–[5], due to its simplicity and low implementation complexity.

In this letter, we consider a dual-hop AF half-duplex relaying MIMO system with spatial multiplexing, under the assumption that channel state information (CSI) is available at the destination only (so called noncoherent relaying [6]). Dual-hop relaying schemes are relevant whenever the signal received via the direct link is below the noise level, due to deep fading or large obstructions. Moreover, it is widely recognized that complete and reliable CSI can be acquired at the relays with a reasonable overhead only in slowly-changing channels and by recruiting only a few closely located relays.

Performance analysis of dual-hop noncoherent AF relaying MIMO schemes over fading channels has been widely carried out in the literature. To name a few, in [2] closed-form expressions and upper/lower bounds on the ergodic capacity are derived in high signal-to-noise ratio (SNR) conditions, whereas in [7] the outage performance of a dual-hop single-antenna/single-relay system is assessed in closed form.

To the best of our knowledge, a complete study of the symbol error probability (SEP) at the output of a linear minimum mean-square-error (MMSE) receiver, in the case of an arbitrary (possibly large) number of multiple relays placed in different positions, has not been considered yet. An approximate SEP expression for linear zero-forcing (ZF) equalization at the destination has been obtained in [8], but the extension to the MMSE case is not straightforward. We derive in the following a closed-form approximation of the SEP at the output of the MMSE equalizer, which proves to be fairly accurate as long as the number of relays exceeds two.

II. SIGNAL MODEL

We consider an AF relaying MIMO system employing spatial multiplexing, with N_S source and N_D destination antennas, operating over a wireless channel modeled as an independent and identically distributed (i.i.d.) slowly fading Rayleigh channel. We assume that there is no direct link, and thus communication between source (S) and destination (D) takes place through M intermediate relay nodes, each equipped with N_K antennas, which simply scale their received signals according to a power constraint and forward them to the destination. Relays operate in half-duplex mode, i.e., they cannot transmit and receive simultaneously; in addition, there is no relay-to-relay communication; finally, we assume that source and relays are not aware of channel conditions, and thus CSI is available at the destination only (e.g., by training).

The received signal at D can be written [2] as

$$
\mathbf{r} = \sum_{i=1}^{M} \mathbf{H}_2^{(i)} \mathbf{z}_k^{(i)} + \mathbf{w}_D
$$

where $\mathbf{z}_k^{(i)} \xrightarrow{\mathcal{D}} \sqrt{\sigma_k} (\mathbf{H}_1^{(i)} \mathbf{s} + \mathbf{w}_k^{(i)})$ is the signal forwarded by the ith relay towards D, $\sigma_k > 0$ is the scaling factor at the ith relay, $\mathbf{s} \in \mathbb{C}^{N_S \times 1}$ is the transmit symbol vector, $\mathbf{w}_k^{(i)} \in \mathbb{C}^{N_K}$ and $\mathbf{w}_k \in \mathbb{C}^{N_K}$ represent the noise vectors at the ith relay and D, respectively, $\mathbf{H}_1^{(i)} \in \mathbb{C}^{N_K \times N_S}$ and $\mathbf{H}_2^{(i)} \in \mathbb{C}^{N_D \times N_K}$ denote the channel matrices of the first hop ($S \rightarrow i$th relay) and second hop (ith relay $\rightarrow D$), respectively.

We assume that: (a1) the entries of \mathbf{s} are i.i.d. equiprobable zero-mean circularly symmetric [9] complex random variables...
(RVs) of unit variance, belonging to a quadrature amplitude
modulation (QAM) constellation with cardinality Q; (a2) $H_i^{(j)}$ are i.i.d. zero-mean circularly symmetric complex Gaussian (ZMCSCG) RVs, with variance $\sigma_{H_i}^2 \triangleq \text{dSD}/d_{SR}^2$; d_{SR} is the distance between S and the ith relay, and $\eta \geq 2$ is the path-loss exponent; (a3) H_i are i.i.d. ZMCSCG RVs, with variance $\sigma_{H_i}^2 \triangleq \text{dSD}/d_{SR, D}^2$, where $d_{SR, D}$ is the distance between the ith relay and D; (a4) $w_b^{(i)}$ and w_n are modeled as i.i.d. ZMCSGC RVs of variance σ_w^2. The scaling factor α_i is chosen so as to satisfy the average power constraint $\mathbb{E}[\|w_b^{(i)}\|^2] = N_b P_n$, where P_n is the power available at the ith relay for each antenna, thus obtaining $\alpha_i = P_i/(N_b \sigma_{H_i}^2 + \sigma_w^2)$.

III. SEP ANALYSIS

Let $C \triangleq \sum_{i=1}^{M} \sqrt{\alpha_i} H_i^{(1)} H_i^{(0)} \in \mathbb{C}^{N_b \times N_s}$ denote the equivalent dual-hop MIMO channel, and define $H_2 \triangleq [H_2^{(1)}, H_2^{(2)}, \ldots, H_2^{(M/4)}] \in \mathbb{C}^{N_b \times M/4}$. We assume that: (a5) rank$(C) = N_b \leq N_S$ with probability 1, i.e., C is full-column rank. The received signal (1) at D is subject to MMSE equalization, thus yielding $Y = C^H (C C^H + R_{ww})^{-1} R$, where $R_{ww} \triangleq \mathbb{E}[w w^H]$, with $w \triangleq \sum_{i=1}^{M} \sqrt{\alpha_i} H_i^{(0)} w_b^{(i)} + w_n$, is the correlation matrix of the overall noise at the destination, conditioned on H_2, which can be expressed as

$$R_{ww} = \sigma_w^2 \left(\sum_{i=1}^{M} \alpha_i H_i^{(0)} H_i^{(0)*} \right) + I_{N_b}.$$ \hskip 1cm (2)

Let $H_1 \triangleq [H_1^{(1)/T}, H_1^{(2)/T}, \ldots, H_1^{(M/4)/T}] \in \mathbb{C}^{M N_b \times N_S}$. By applying the conditional expectation rule, the error probability $P_n(e)$ in detecting the nth entry of s can be calculated as $P_n(e) = \mathbb{E} [I_{N_b} (H_1^H P_n(e) H_2^H) I_{N_b}]$, where $P_n(e) H_2^H$ represents the SEP conditioned on H_1 and H_2. The conditional SEP $P_n(e) H_1^H [P_n(e) H_2^H]$ can be upper-bounded as (see, e.g., [10]) $P_n(e) H_1^H \leq b \Phi_{\text{SINR}_n}(-u)$, with $b \triangleq 2 (1 - Q^{-1}/2)$ and $u \triangleq (3/2)(Q - 1)^{-1}$, where $\Phi_{\text{SINR}_n} = \mathbb{E} [I_{N_b} (\exp(s \text{ SINR}_n))]$ is the moment generating function (MGF), conditioned on H_1, of the RV SINR_n, representing the signal-to-interference-plus-noise ratio (SINR) at the output of the MMSE equalizer on the nth spatial stream. For fixed values of H_1 and H_2, the SINR on the nth spatial stream is given by

$$\text{SINR}_n \triangleq \frac{1}{\text{MMSE}_n} - 1 = \left(\frac{1}{(I_{N_b} + C C^H R_{ww} C^{-1})_{n,n}} - 1 \right) \times \left(I_{N_b} + C C^H R_{ww} C^{-1} \right)_{n,n}$$ \hskip 1cm (3)

where $\{A\}_{n,n}$ stands for the (n, n) entry of matrix A. Derivation of the exact distribution of SINR_n, conditioned on H_1, is complicated by the presence in (3) of the noise correlation matrix R_{ww}. To render the problem mathematically tractable, let us first focus on the term $S_M \triangleq \sum_{i=1}^{M} \alpha_i H_i^{(i)} H_i^{(0)*}$ in (2), which is the sum of M complex Wishart matrices [11], each one having N_b degrees of freedom and covariance matrix $\alpha_i \sigma_{H_i}^2 I_{N_b}$. As shown in [8], as the number M of cooperative relays increases, matrix S_M converges almost surely to its mean $M \alpha \beta N_b I_{N_b}$, with $\beta \triangleq \sum_{i=1}^{M} \alpha_i \sigma_{H_i}^2$; in this case, the noise correlation matrix (2) can be well approximated as $R_{ww} \approx \sigma_w^2 (\beta N_b + 1) I_{N_b}$, which, accounting for (3), leads to the following SINR approximation

$$\text{SINR}_n \approx \frac{1}{\frac{1}{(I_{N_b} + \gamma C C^H)^{-1})_{n,n}} - 1}$$ \hskip 1cm (4)

where $\gamma \triangleq 1/(\sigma_w^2)$, with $\delta \triangleq \beta N_b + 1$.

Let $C_{(-n)} \triangleq C_{N_b \times (N_b-1)}$ denote the matrix C with its nth column c_n removed. We consider the economy-size singular value decomposition $C_{(-n)} = U_n D_n V_n^H$, where the semi-unitary matrix $U_n \in \mathbb{C}^{N_b \times (N_b-1)}$ and the unitary matrix $V_n \in \mathbb{C}^{(N_b-1) \times (N_b-1)}$ contain the left and right singular vectors, respectively, associated with the nonzero singular values of $C_{(-n)}$, gathered in matrix $D_n \triangleq \text{diag}(d_{n,0}, d_{n,1}, \ldots, d_{n,N_b-2}) \in \mathbb{R}^{(N_b-1) \times (N_b-1)}$. It can be shown [12] that the SINR at the output of the MMSE receiver can be decomposed into the sum of two statistically independent RVs as $\text{SINR}_n \approx \zeta_n + \text{SINR}_n^{\text{indep}}$, where $\text{SINR}_n^{\text{indep}} \approx \gamma/|\beta(C C^H)^{-1})_{n,n}|$ is the approximate SINR at the output of the Z equalizer on the nth spatial stream, whereas $\zeta_n \approx \gamma\sum_{n \neq n} + \gamma D_n^{-1} c_n$, with $\zeta_n \approx U_n^H \zeta_n$. Given H_1, the approximate $\text{SINR}_n^{\text{indep}}$ is a Gamma RV [13] with shape parameter $k = N_b - N_S - 1$ and scale parameter $\theta = \gamma \sum_{n \neq n}$, with $\gamma \sum_{n \neq n} \approx \left| \frac{1}{(R_n -1)_{n,n}} \right|$, where $R_n \triangleq \Omega \otimes (I_{N_b} H_1^H H_1 I_{N_b}) \in \mathbb{C}^{N_S \times N_S}$ represents the covariance matrix of each row of C, $H_1 \triangleq \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_M) \otimes I_{N_b}$ is the normalized channel matrix, with i.i.d. unit-variance ZMCSCG entries, $\Omega \triangleq \text{diag}(\alpha_1 \sigma_1, \alpha_2 \sigma_2, \ldots, \alpha_M \sigma_M)$ is the Kronecker product [14]. From the statistical independence between SINR_n and ζ_n, it follows that

$$\Phi_{\text{SINR}_n}(-u) = \Phi_{\zeta_n}(-u) \Phi_{\text{SINR}_n^{\text{indep}}}(-u) \approx \Phi_{\zeta_n}(-u) (1 + u \gamma \sum_{n \neq n})^{-1}$$ \hskip 1cm (5)

where we approximated $\Phi_{\text{SINR}_n^{\text{indep}}}(-u)$ with the MGF of a Gamma RV. At this point, we need to evaluate the MGF of ζ_n. By writing ζ_n as a function of the entries of $c_n \triangleq \{c_n, 0, c_n, 1, \ldots, c_n, N_b-1\}^T$ and the singular values $d_{n,i}$, and applying the conditional expectation rule, one obtains the expression of $\Phi_{\zeta_n}(-u)$ reported in (6) at the top of this page. In the last-hand of (6), we have exploited the statistical independence, conditioned on $C_{(-n)}$, among the circular Gaussian RVs c_n, having mean [12] $\mu_{n,i} \triangleq d_{n,i} \mathbb{E}[V_n^H R_n^{-n,n}^{-1}]_{n,n}$, and variance $\sigma_{n,i}^2$, where $R_n^{-n,n}$ is the covariance matrix of R_n with its nth row and nth column removed, whereas $r_{n,-n}$ denotes the nth column of R with its nth removed.
Thus, accounting for the expression of χ, by substituting (10) into the upper bound on $P_n(|H_1|)$ and averaging with respect to H_1, the SEP on the nth stream of the system assumes the form

$$P_n(c) \leq b \left(\frac{N_D}{N_S - 1} \right) \left(\frac{N_S - 1}{u \gamma \Sigma_n} \right) \frac{N_S - 1}{(u \gamma \Sigma_n)^{N_0 - N_S + 1}} \int_{0}^{\infty} \left(\frac{1}{(1 + t)^{N_0 + 1}} \right) dt \times \left(\frac{N_S - 1}{u \gamma \Sigma_n} \right) \frac{N_S - 1}{(u \gamma \Sigma_n)^{N_0 - N_S + 1}} \int_{0}^{\infty} \left(\frac{1}{(1 + t)^{N_0 + 1}} \right) dt \cdot (11)$$

To calculate (11), it can be shown [15] that matrix R has approximately a complex central Wishart distribution with $\nu_0 \triangleq N_S (\sum_{i=1}^{M} \alpha_i \sigma^2_{1,i} \sigma^2_{2,i})^2 / \sum_{i=1}^{M} (\alpha_i \sigma^2_{1,i} \sigma^2_{2,i})^2$ degrees of freedom and covariance matrix $\Sigma_{\nu_0} = (\sum_{i=1}^{M} \alpha_i \sigma^2_{1,i} \sigma^2_{2,i})^2 / \sum_{i=1}^{M} (\alpha_i \sigma^2_{1,i} \sigma^2_{2,i}) \lambda_{\text{max}} \Lambda$. Therefore, provided that $\nu_0 > N_0$ and ν_0 approaching infinity in such a way that $(N_0 - 1)/\nu_0$ tends to a finite limit $\ell > 0$, the largest eigenvalue of the complex Wishart matrix $R_{(-n,-n)}$ converges almost surely to $\lambda_{\ell} = 2(N_0 - 1)(1 + \sqrt{\ell})^2$; thus, in order to simplify the calculation of the expectation in (11), we replace λ_{max} with its limiting (nonrandom) value λ_{ℓ}. Relying on Fubini-Tonelli theorem to switch the order of integration and in the expression of $P_n(c)$, we obtain the final expression of the SEP reported in (12) at the top of the following page.

Evaluation of (12) entails a computational complexity that is basically dominated by the calculation of the integral, which can be accurately evaluated by using numerical techniques, e.g., Gaussian quadrature methods. Such a computational burden is significantly smaller than the complexity of a Monte Carlo simulation: indeed, since $P_n(c)$ might assume extremely low values in the high-SNR region, especially for $M > 2$ (see Section IV), a large number of Monte Carlo runs are required to obtain accurate SEP estimates.

Some remarks about (12) are finally in order. First, we highlight that $P_n(c)$ turns out to be independent of the symbol index n. Furthermore, it is worth noting that, in the high-SNR regime, the scaling factor α_i can be approximated as $\alpha_i \approx P_i/(\Sigma_i \sigma_{2,i})$, i.e., it becomes independent of γ. Consequently, ν_0 in (12) turns out to be independent of γ and, thus, the SEP can be expressed as $P_\ell(c) \approx G(c) \gamma^{-d}$, where $d \triangleq N_S - N + 1$ is the diversity order of the system, which does not depend on the number M of relays, since no CSI is available, and the coding gain is denoted by

$$G_c \triangleq \left(\frac{N_D}{N_S - 1} \right) \left(\frac{N_S - 1}{u \gamma \Sigma_n} \right) \frac{N_S - 1}{(u \gamma \Sigma_n)^{N_0 - N_S + 1}} \frac{\Gamma(\nu_0 - N_0)}{\Gamma(\nu_0 - N_0) + 1} \int_{0}^{\infty} \left(\frac{1}{(1 + t)^{N_0 + 1}} \right) dt \cdot (13)$$

As an example, the Matlab routine quadgk uses Gaussian quadrature by implementing the Gauss-Kronrod method.
IV. NUMERICAL RESULTS

We consider a network geometry consisting of a S-D pair spaced by the distance $d_{SD} = 1$, plus M relaying nodes, which are randomly and independently distributed in a circle of radius $r = 0.1$, positioned on the line joining S to D at distance $d_{SC} = 0.2$ from the source. Source, destination and relays are equipped with $N_S = 2$, $N_D = 3$, and $N_R = 2$ antennas, respectively. The employed modulation is Gray-labeled QPSK ($Q = 4$). Both the first-hop and second-hop MIMO channels are generated according to assumptions (a2) and (a3), with $\eta = 3$; in addition, all the relays transmit with the same power $P_t = 1$, for $i \in \{1, 2, \ldots, M\}$ (simulations not reported for brevity show that the ABER does not vary significantly if the relays transmit with slightly different powers.)

In Fig. 1 we plot, for different values of $M \in \{2, 3, 4\}$, the average bit-error-rate (ABER) of the MMSE receiver. In particular, we compare the ABER values when the SEP $P_{b}(e)$ is calculated from the bound (12) [labeled as “MMSE (bound)” in the plots], with the exact ones [labeled as “MMSE (exact)”, evaluated by means of a semi-analytical approach, by averaging $P_{b}(e|H_1, H_2)$ with respect to H_1 and H_2 over 10^6 Monte Carlo trials. Both curves are reported as a function of SNR $\bar{\sigma}^2 = 1/\sigma^2$, ranging from 0 to 20 dB.

It is apparent from Fig. 1 that the exact performance of the MIMO AF system with MMSE reception, which exhibits in this scenario a diversity order equal to $d = N_D - N_S + 1 = 2$, is well predicted by the proposed bound (12), as the SNR increases. The coding gain of the cooperative system rapidly increases as the number of relays M rises. Furthermore, the approximation (12) becomes more and more accurate as the number M of cooperating relays grows, which is in part due to the fact that the accuracy of the approximation (4) improves.

V. CONCLUSIONS

In this paper, a tight approximation for the SEP of a dual-hop noncoherent AF MIMO system with multiple relays and MMSE equalization at the destination was calculated, without imposing any restriction on the number of relays or their positions. The validity of the proposed approximation was numerically assessed by showing a remarkably good agreement between theoretical and numerical results in the high-SNR region and for a number of relays greater than two.

REFERENCES

