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Abstract—This letter deals with second-order statistics (SOS)
of continuous-phase modulated (CPM) signals. To overcome
some mathematical inconsistencies emerging from the idealized
assumption that the CPM signal evolves from t = −∞, we
consider a one-sided model for the signal, which starts from t = 0,
noting also that such a model emerges naturally when building
practical SOS estimators. On the basis of such a model, we
first evaluate the SOS of the pseudo-symbols, which arise when
expressing a CPM signal in terms of its Laurent representation,
as well as closed-form expressions of the cyclic autocorrelation
and conjugate correlation functions of one-sided CPM signals.

Index Terms—CPM signals, Laurent representation, SOS.

I. INTRODUCTION

KNOWLEDGE of second-order statistics (SOS) of the
received signal is required in the synthesis of receiv-

ing structures based on quadratic cost measures, like the
minimum-mean square error (MMSE), minimum-output en-
ergy (MOE), or maximum-signal-to-noise-ratio (SNR) crite-
ria. When a bandpass signal is represented in terms of its
complex envelope x(t), SOS characterization requires [1], [2]
evaluation of both its statistical autocorrelation function (ACF)
Rxx(t, τ) , E [x(t)x∗(t− τ)] and its conjugate correlation
function (CCF) Rxx∗(t, τ) , E [x(t)x(t− τ)]. Since many
man-made signals exhibit SOS that are periodic or almost pe-
riodic functions of time, i.e., the signals obey a cyclostationary
or almost cyclostationary [3] model, their ACF and CCF can
be expanded in a Fourier series with respect to the variable t,
whose coefficients are the cyclic ACF/CCF [3].

Continuous-phase modulated (CPM) signals [4], [5] are
widely employed in wireless communication systems, due to
their favorable spectral and constant-modulus properties, as
well as their good error-probability performance. Modeling
and evaluation of the SOS of CPM signals is complicated
by the memory and non-linearity of the modulation process.
To this aim, a useful tool is the Laurent representation [6],
wherein a CPM signal is expanded as a linear superposition
of pulse-amplitude modulated (PAM) signals. Based on this
representation, an expression for the ACF and power spec-
trum of the complex envelope of the CPM signal has been
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derived in [6]: however, no discussion about the CCF and
cyclostationarity properties was provided.

In [7], evaluation of cyclic SOS and higher-order statistics
(HOS) of CPM signals (including ACF and CCF) has been
carried out in the nonstochastic or fraction-of-time (FOT)
probability framework [8]; however, a problem of convergence
of infinite products has been solved by introducing an “un-
determined constant” that can assume values ±1. A careful
analysis of the derivations in [7] reveals that such a constant
stems from the assumption that the CPM signal starts from
t = −∞: however, in practice, CPM signals evolve starting
from a finite time-epoch. Moreover, practical SOS estimators
are built by evaluating suitable time averages of sampled signal
data, taken starting from a particular time epoch, e.g., t = 0.

We show in this letter that the aforementioned problem of
convergence, as well as the practical issues of SOS estimation,
can be dealt with by modeling the CPM signal as a one-sided
random process [9], i.e., as a process that starts from t = 0.
In particular, on the basis of such model and exploiting the
linearity of the Laurent representation, we evaluate closed-
form expressions for the cyclic ACF and CCF of the CPM
signal, which depend in their turn on the SOS of the pseudo-
symbols [6] of the Laurent representation.

II. ONE-SIDED CPM SIGNAL MODEL

The complex envelope x(t) of a continuous-time CPM
signal with baud-rate 1/T defined for t ≥ 0 (one-sided
model) can be obtained by straightforward modifications of
the classical two-sided model (see, e.g., in [4], [5]) as follows

x(t) = exp

[
j2πh

+∞∑
n=0

an g(t− nT )

]
(1)

where h is the modulation index, the symbol sequence
{an}n≥0 assumes values in the M -ary alphabet A ,
{±1,±3, . . . ,±(M − 1)}, g(t) ,

∫ t
0
f(u) du is the phase re-

sponse, and f(t) is the frequency response satisfying the three
conditions: f(t) ≡ 0 for each t 6∈ [0, LT ]; f(t) = f(LT − t);
and

∫ LT
0

f(u) du = g(LT ) = 1/2, with L ∈ N.
Assuming that h is not an integer and M = 2 (binary

alphabet), by straightforward modifications of the Laurent
representation proposed in [6], it can be proven that x(t) for
t ≥ 0 is a linear superposition of Q , 2L−1 PAM waveforms1

x(t) =

Q−1∑
q=0

+∞∑
n=0

sq,n cq(t− nT ) (2)

1Eqs. (1) and (2) should be slightly modified when 0 ≤ t < (L− 1)T , to
account for the finite-length of the Laurent pulses: however, such a transient
phenomenon is not relevant when evaluating infinite-time averages.
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Rsq1s∗q2 (n,m) =
m−1∏
`=0

cos[πh(1− βq1,`)]
−m−1∏
`=0

cos[πh(1− βq2,`)]
min[n,L+m−1−(m)+]∏

`=(m)+

cos [πh (2− βq1,` − βq2,`−m)]

×
min(n−m,L−1)∏

`=L−m

cos [πh (2− βq2,`)]
min(n,L−1)∏
`=L+m

cos [πh (2− βq1,`)] [cos(2πh)]
max[0,n−L+1−(m)+] (9)

R+
sq1s

∗
q2

(m) =
m−1∏
`=0

cos[πh(1− βq1,`)]
−m−1∏
`=0

cos[πh(1− βq2,`)]
L+m−1−(m)+∏

`=(m)+

cos [πh (2− βq1,` − βq2,`−m)]

×
L−1∏

`=L−m

cos [πh (2− βq2,`)]
L−1∏

`=L+m

cos [πh (2− βq1,`)] [cos(2πh)]
−L+1−(m)+ (11)

where the following non-linear functions of {an}n≥0

sq,n = exp

jπh
 n∑
`=0

a` −
min(n,L−1)∑

`=0

an−`βq,`

 (3)

are the pseudo-symbols, with n ≥ 0, βq,` ∈ {0, 1} is the `th
bit of the radix-2 representation of q ∈ {0, 1, . . . , Q− 1}, i.e.,
q =

∑L−1
`=1 2`−1βq,` (with βq,0 = 0), for ` ∈ {1, 2, . . . , L−1},

and cq(t) is a real-valued pulse (see [6] for its expression).
The Laurent representation can be extended to multilevel CPM
signaling [10] and integer modulation indexes [11].

III. SOS OF ONE-SIDED CPM SIGNALS

The time-averaged ACF of a two-sided CPM signal has been
evaluated in [6, eq. (28)] in terms of its Laurent representation.
The corresponding statistical ACF for the one-sided model can
be written, for t ≥ (τ)+, with (τ)+ , max(τ, 0), as

Rxx(t, τ) =

Q−1∑
q1,q2=0

+∞∑
n=0

n∑
m=−∞

Rsq1sq2 (n,m)

× cq1(t− nT ) cq2(t− nT +mT − τ) (4)

where Rsq1sq2 (n,m) , E
[
sq1,ns

∗
q2,n−m

]
, for n ≥ (m)+,

with (m)+ , max(m, 0), is the cross-correlation function of
the pseudo-symbols. Evaluation of the CCF for the two-sided
CPM signal has not been carried out in [6]. It can be shown
that, for the one-sided model, one has

Rxx∗(t, τ) =

Q−1∑
q1,q2=0

+∞∑
n=0

n∑
m=−∞

Rsq1s∗q2 (n,m)

× cq1(t− nT ) cq2(t− nT +mT − τ) (5)

where Rsq1s∗q2 (n,m) , E [sq1,nsq2,n−m], for n ≥ (m)+, is
the conjugate cross-correlation function of {sq,n}n≥0.

Both (4) and (5) depend on the SOS Rsq1sq2 (n,m) and
Rsq1s∗q2 (n,m) of the pseudo-symbols, which are evaluated in
the following.2 Starting from (3), it can be proven that, for
n ≥ (m)+, one has

Rsq1sq2 (n,m) = [cos(πh)]∆
+
q1q2

(n,m) (6)

2Cyclic SOS and HOS of CPM signals have been calculated in [7] in the
nonstochastic FOT framework, without however giving explicit expressions
for the SOS of the pseudo-symbols.

where, for any m ∈ Z, ∆+
q1q2(n,m) , ∆q1q2(m) +

∆̃q1q2(n,m), where ∆q1q2(m) is an integer, whose explicit
expression is given in [6, eq. (26)], whereas

∆̃q1q2(n,m) =

min(L+m−1,L−1)∑
`=n+1

2βq2,`−m βq1,`

−
L−1∑
`=n+1

βq1,` −
L−1∑

`=n−m+1

βq2,` (7)

is a correction term, which vanishes for n ≥ L−1+(m)+; in
the latter case, the cross-correlation function for the one-sided
model turns out to be the same of that for the two-sided model
after a small transient and, moreover, it does not depend on
n, i.e., one has, for n ≥ L− 1 + (m)+,

Rsq1sq2 (n,m) = Rsq1sq2 (m) = [cos(πh)]∆q1q2
(m) . (8)

Moreover, starting again from (3), it can be inferred that, for
n ≥ (m)+, the conjugate cross-correlation function of pseudo-
symbols assumes the form3 given in (9) at the top of this page.
Note that, for n ≥ L− 1 + (m)+, (9) can be factorized as

Rsq1s∗q2
(n,m) = R+

sq1s
∗
q2

(m) [cos(2πh)]
n (10)

where R+
sq1s

∗
q2

(m) is given in (11) at the top of this page.
It is seen from (10) that for h 6= 1

2 +k, with k ∈ Z, i.e., for
| cos(2πh)| < 1, the conjugate cross-correlation function of the
pseudo-symbols vanishes as n increases; in this case, we will
prove later that the one-sided CPM signal is asymptotically
circular or proper (see [1], [2]). Instead, when h = 1

2 +k, with
k ∈ Z, i.e., cos(2πh) = −1, the conjugate cross-correlation
function of the pseudo-symbols does not vanish as n increases;
in this case, the CPM signal exhibits asymptotically non-
vanishing noncircular or improper [1], [2] features.

IV. CYCLIC SOS OF ONE-SIDED CPM SIGNALS

With reference to the one-sided CPM signal model, we ob-
serve [see (4) and (5)] that the signal exhibits in general time-
varying SOS. Such time-varying features cannot be estimated
in practice unless a structured model for time variations is
assumed. When time variations in SOS are described by a
periodic or almost periodic model for t ≥ 0, they can be

3When the lower-limit of a sum [product] is larger than its upper-limit, the
sum [product] is conventionally equal to zero [one].
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Rαxx(τ) =

Q−1∑
q1,q2=0

+∞∑
m=−∞

〈
L−2+(m)+∑
n=(m)+

Rsq1sq2 (n,m) pq1q2(t− nT, τ −mT ) e−j2παt〉+

+

Q−1∑
q1,q2=0

+∞∑
m=−∞

Rsq1sq2 (m)〈
+∞∑

n=L−1+(m)+

pq1q2(t− nT, τ −mT ) e−j2παt〉+ (16)

Rαxx∗(τ) =

Q−1∑
q1,q2=0

+∞∑
m=−∞

〈
L−2+(m)+∑
n=(m)+

Rsq1s∗q2 (n,m) pq1q2(t− nT, τ −mT ) e−j2παt〉+

+

Q−1∑
q1,q2=0

+∞∑
m=−∞

R+
sq1s

∗
q2

(m)〈
+∞∑

n=L−1+(m)+

[cos(2πh)]n pq1q2(t− nT, τ −mT ) e−j2παt〉+ (22)

conveniently measured and estimated by defining the cyclic
ACF at the cycle frequency α ∈ R as

Rαxx(τ) = 〈Rxx(t, τ) e−j2παt〉+ (12)

where 〈f(t, τ)〉+ , limZ→+∞
1
Z

∫ Z
(τ)+

f(t, τ) dt denotes the
one-sided time average operator. An estimator of (12) is the
finite time-average of x(t)x∗(t− τ) e−j2παt:

R̂αxx(τ) =
1

Z

∫ Z

(τ)+
x(t)x∗(t− τ) e−j2παtdt . (13)

It is clear that R̂αxx(τ) is an asymptotically (for Z → +∞)
unbiased estimator of Rαxx(τ); under mild conditions (see [12],
[13]), it can be proven that it is also a consistent estimator.

To obtain the theoretical expression of Rαxx(τ), (4) must be
substituted in (12). It is convenient first to rewrite (4) as

Rxx(t, τ) =

Q−1∑
q1,q2=0

+∞∑
m=−∞

+∞∑
n=(m)+

Rsq1sq2 (n,m)

× pq1q2(t− nT, τ −mT ) (14)

where pq1q2(t, τ) , cq1(t)cq2(t− τ). Thus, one has

Rαxx(τ) =

Q−1∑
q1,q2=0

+∞∑
m=−∞

〈
+∞∑

n=(m)+

Rsq1sq2 (n,m)

× pq1q2(t− nT, τ −mT ) e−j2παt〉+ . (15)

Recalling the transient analysis of Rsq1sq2 (n,m) discussed
with reference to (6)–(8), the time average in (15) can be
decomposed as shown in (16) at the top of this page. The
first time average in (16) is zero due to the finite duration of
the signal involved. With reference to the second term, the
two-sided version of the sum over n is clearly periodic in t
of period T , thus it can be expanded as

+∞∑
n=−∞

pq1q2(t − nT, τ − mT ) =
+∞∑

k=−∞

Xk e
j2π k

T t (17)

where {Xk}k∈Z are the Fourier series coefficients, given by
Xk , 1

T Pq1q2(f, τ −mT )
∣∣
f=k/T

, where

Pq1q2(f, τ) ,
∫ +∞

−∞
pq1q2(t, τ) e−j2πftdt

=

∫ +∞

−∞
Cq1(λ)C∗q2(λ− f) ej2π(λ−f)τdλ (18)

is the Fourier transform of pq1q2(t, τ) with respect to t, and
the second expression arises by virtue of Parseval identity,
with Cq(f) denoting the Fourier transform of cq(t). Since (17)
holds for any t, it holds a fortiori for the values of t involved
in the one-sided sum over n in (16); by substituting (17) in
(16), one has

Rαxx(τ) =

Q−1∑
q1,q2=0

+∞∑
m=−∞

Rsq1sq2 (m)
+∞∑

k=−∞

Xk〈ej2π( k
T −α)t〉+ .

(19)
Observing that 〈ej2π( k

T −α)t〉+ = δα−k/T , with δk denoting
the Kronecker delta, (19) shows that the CPM signal exhibits,
in general, wide-sense cyclostationarity [14] with cycle fre-
quencies α = k

T , with k ∈ Z, thus one has

R
k
T
xx(τ) =

1

T

Q−1∑
q1,q2=0

+∞∑
m=−∞

Rsq1sq2 (m)Pq1q2

(
k

T
, τ −mT

)
(20)

with Rsq1sq2 (m) and Pq1q2(f, τ) given by (8) and (18),
respectively.

Let us consider now the CCF given by (5), which can be
conveniently rewritten as

Rxx∗(t, τ) =

Q−1∑
q1,q2=0

+∞∑
m=−∞

+∞∑
n=(m)+

Rsq1s∗q2
(n,m)

× pq1q2(t− nT, τ −mT ) . (21)

Let us define the cyclic CCF Rαxx∗(τ) , 〈Rxx∗(t, τ) e−j2παt〉,
on the basis of (9) and (10), one obtains (22) at the top of this
page. Similarly to (16), it can be proven that the first time
average in (22) goes to zero due to the finite duration of the
signal involved. With reference to the second term, two distinct
cases must be discussed, according to the value of h.

Let us first consider the case where h 6= 1
2 + k, which

implies that | cos(2πh)| < 1; one has

〈
+∞∑

n=L−1+(m)+

[cos(2πh)]npq1q2(t−nT, τ −mT ) e−j2παt〉+

= lim
Z→+∞

1

Z

+∞∑
n=L−1+(m)+

[cos(2πh)]n

×
∫ +∞

−∞
1[(τ)+,Z](t) pq1q2(t− nT, τ −mT ) e−j2παtdt (23)



1070-9908 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LSP.2017.2740964, IEEE Signal
Processing Letters

IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. YY, MONTH 2017 4

∣∣∣∣∣∣ 1

Z

+∞∑
n=L−1+(m)+

[cos(2πh)]n [Z − (τ)+]

∫ +∞

−∞
sinc

{
[Z − (τ)+]f

}
e−j2πfz(τ)P ∗q1q2(f − α, τ −mT ) ej2π(f−α)nT df

∣∣∣∣∣
≤ 1

1− cos(2πh)

∫ +∞

−∞
|sinc

{
[Z − (τ)+]f

}
||Pq1q2(f − α, τ −mT )| df (25)

τ / T

-6 -4 -2 0 2 4 6

|R
x
x

α

(τ
)|

0

0.005

0.01

Theoretical

Theoretical (2 pulses)

Estimated

τ / T

-6 -4 -2 0 2 4 6

|R
x
x
*

α

(τ
)|

0

0.1

0.2

0.3

0.4

Theoretical

Theoretical (2 pulses)

Estimated

Fig. 1. Magnitude of the cyclic ACF (upper) at α = 1/T and cyclic CCF
(lower) at α = 1/2T for a GMSK signal with h = 0.5, L = 4, and
B T = 0.25.

where 1[a,b](t) = 1 for t ∈ (a, b) and zero otherwise. The last
integral in (23) represents a scalar product in L2(R), thus,
resorting to Parseval identity and applying straightforward
properties of the Fourier transform, it can be expressed as

∫ +∞

−∞
1[(τ)+,Z](t) [pq1q2(t− nT, τ −mT ) ej2παt]∗dt

= [Z − (τ)+]

∫ +∞

−∞
sinc

{
[Z − (τ)+]f

}
× e−j2πfz(τ)P ∗q1q2(f − α, τ −mT ) ej2π(f−α)nT df (24)

where z(τ) , Z+(τ)+

2 . Thus, the inequality shown in (25) at
the top of this page can be simply derived. The last integral in
(25) goes to zero when Z → +∞ due to the behavior of the
sinc function. Thus, when h 6= 1

2 + k, a CPM signal exhibits
a zero CCF, hence it obeys a circular signal model.

Instead, let us consider the case where h = 1
2 + k, with

k ∈ Z, in which case cos(2πh) = −1. It turns out that

Rαxx∗(τ) =

Q−1∑
q1,q2=0

+∞∑
m=−∞

R+
sq1s

∗
q2

(m)

× 〈
+∞∑

n=L−1+(m)+

(−1)npq1q2(t− nT, τ −mT ) e−j2παt〉+ .

(26)

If we consider the two-sided version of the sum over n, we
observe that it is periodic in t of period 2T , thus it can be

expanded as
+∞∑

n=−∞
(−1)npq1q2(t−nT, τ−mT ) =

+∞∑
k=−∞

Yk e
j2π k

2T t (27)

where {Yk}k∈Z are the Fourier series coefficients, given by
Yk , 1

2TGq1q2(f, τ −mT )
∣∣
f=k/2T

, where

Gq1q2(f, τ) , Pq1q1(f, τ)
[
1− e−j2πfT

]
. (28)

In this case, reasoning similarly to (19), it can be proven
that the CPM signal exhibits, in general, conjugate wide-sense
cyclostationarity [14] with cycle frequencies α = k

2T , with
k ∈ Z, thus one has

R
k
2T
xx∗(τ) =

1

2T

Q−1∑
q1,q2=0

+∞∑
m=−∞

R+
sq1s

∗
q2

(m)

×Gq1q2
(
k

2T
, τ −mT

)
. (29)

However, taking into account (28), it turns out that

Gq1q2

(
k

2T
, τ −mT

)
=

{
2Pq1q2

(
k

2T , τ −mT
)
, k odd;

0, k even;
(30)

hence the cyclic CCF is nonzero only for α = 1
2T + k

T , with
k ∈ Z, and one has

R
1

2T + k
T

xx∗ (τ) =
1

T

Q−1∑
q1,q2=0

+∞∑
m=−∞

R+
sq1s

∗
q2

(m)

× Pq1q2
(
k

T
+

1

2T
, τ −mT

)
(31)

for all k ∈ Z, with R+
sq1s

∗
q2

(m) and Pq1q2(f, τ) given by (11)
and (18), respectively.

To validate our findings, we plot in Fig. 1 the cyclic ACF
given by (20) and CCF given by (31) for a Gaussian Minimum-
Shift Keying (GMSK) signal with h = 0.5, L = 4, and
BT = 0.25, together with their estimates obtained over
215 symbols, with 25 samples/symbol. We also report the
approximate expressions of the cyclic ACF and CCF obtained
by considering only the first two Laurent pulses, which contain
a large portion of the signal energy in many cases of interest
[15]. All the curves show a very good agreement between
simulation and analytical results.

V. CONCLUSIONS

In this letter, by adopting a one-sided model for a CPM
signal, we derived closed-form expressions for its cyclic SOS,
in terms of the SOS of the pseudo-symbols of its Laurent rep-
resentation. The obtained expressions can be useful to design
receiving structures for CPM signals based on optimization of
quadratic cost-functions.
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